Car 51 is a solar car that competed in the 1993 World Solar Challenge. The car is now being refitted by Year 12 students for their engineering studies.

Energy: Solar Electric

Gears have allowed us to increase or decrease the amount of work we do without additional energy from us. Here the gears of a bike are shown.

Energy: Kinetic when moving – Chemical from rider’s muscles

Formula SAE vehicles are down sized racing cars built and raced by tertiary students. Many of the cars have been adapted to run on bio fuels.

Energy: Motor - Chemical Motion - Kinetic

Solar Car Kelly runs entirely on electricity gained from its solar arrays over its top surface. Additional power is gained by regenerative braking.

Energy: Motor - Electrical Motion - Kinetic

The Nissan Leaf runs on electricity. Recharging is shown here using a special connection found in the car’s boot area.

Energy: Motor - Electrical Motion is Kinetic

Plants need moisture via their roots and carbon dioxide through their leaves in the presence of sunlight before photosynthesis can take place. Only then can a plant release oxygen.

Energy: Chemical

A fire needs 3 conditions to exist. Fuel, oxygen & ignition temperature. What follows is a chemical reaction where heat is produced.

Energy: Fire - Chemical Heat - Thermal

The Jatropha plant is poisonous to animals but the nuts produce oil that when refined becomes a bio-fuel.

Energy: Chemical

One of Sydney Harbour’s light houses. Once lit by fossil fuels, today most function using electricity from either the grid or adjacent solar arrays.

Energy: Light

Vehicle being refuelled with hydrogen

Energy: Motor - Chemical & Thermal during combustion. Motion of the vehicle

Motion - Kinetic + some Thermal (friction between road, tyres & moving parts)

Energy: Potential & Kinetic

Cranes lift objects. The higher the object the greater the potential energy. When lowering an object the potential becomes less and kinetic increases.

Energy: Potential & Kinetic

The rotation of a wind turbine enables two like magnetic poles to push themselves apart. The resultant rotation gives rise to an electrical charge.

Energy: Motion - Kinetic - Electrical

A small solar panel runs this toy car. Electricity from the panel goes directly to the motor to produce motion.

Energy: Motor - Electrical Motion is Kinetic

Tele communication can rely on radio waves to send messages across a nation. Here a repeater tower boosts the radio signal.

Energy: Sound

Plants gain energy from the act of photosynthesis. Animals benefit from this energy when they eat plants.

Energy: Chemical

Sailing relies on favourable winds. Winds push sails forward to create motion.

Energy: Kinetic

Paragliding is a sport that relies on the motion of a boat or vehicle and favourable winds. Staying aloft depends on manipulating cords.

Energy: Kinetic

Electrolysis is a chemical reaction where water, a compound is separated into the elements Hydrogen & Oxygen by electrical means.

Energy: Chemical & Electrical

Car 51 is a solar car that competed in the 1993 World Solar Challenge. The car is now being refitted by Year 12 students for their engineering studies.

Energy: Solar Electric

Gears have allowed us to increase or decrease the amount of work we do without additional energy from us. Here the gears of a bike are shown.

Energy: Kinetic when moving – Chemical from rider’s muscles

Formula SAE vehicles are down sized racing cars built and raced by tertiary students. Many of the cars have been adapted to run on bio fuels.

Energy: Motor - Chemical Motion - Kinetic

Solar Car Kelly runs entirely on electricity gained from its solar arrays over its top surface. Additional power is gained by regenerative braking.

Energy: Motor - Electrical Motion - Kinetic

The Nissan Leaf runs on electricity. Recharging is shown here using a special connection found in the car’s boot area.

Energy: Motor - Electrical Motion is Kinetic

Plants need moisture via their roots and carbon dioxide through their leaves in the presence of sunlight before photosynthesis can take place. Only then can a plant release oxygen.

Energy: Chemical

A fire needs 3 conditions to exist. Fuel, oxygen & ignition temperature. What follows is a chemical reaction where heat is produced.

Energy: Fire - Chemical Heat - Thermal

The Jatropha plant is poisonous to animals but the nuts produce oil that when refined becomes a bio-fuel.

Energy: Chemical

One of Sydney Harbour’s light houses. Once lit by fossil fuels, today most function using electricity from either the grid or adjacent solar arrays.

Energy: Light

Vehicle being refuelled with hydrogen

Energy: Motor - Chemical & Thermal during combustion. Motion of the vehicle

Motion - Kinetic + some Thermal (friction between road, tyres & moving parts)

Energy: Potential & Kinetic

Cranes lift objects. The higher the object the greater the potential energy. When lowering an object the potential becomes less and kinetic increases.

Energy: Potential & Kinetic

The rotation of a wind turbine enables two like magnetic poles to push themselves apart. The resultant rotation gives rise to an electrical charge.

Energy: Motion - Kinetic - Electrical

A small solar panel runs this toy car. Electricity from the panel goes directly to the motor to produce motion.

Energy: Motor - Electrical Motion is Kinetic

Tele communication can rely on radio waves to send messages across a nation. Here a repeater tower boosts the radio signal.

Energy: Sound

Plants gain energy from the act of photosynthesis. Animals benefit from this energy when they eat plants.

Energy: Chemical

Sailing relies on favourable winds. Winds push sails forward to create motion.

Energy: Kinetic

Paragliding is a sport that relies on the motion of a boat or vehicle and favourable winds. Staying aloft depends on manipulating cords.

Energy: Kinetic

Electrolysis is a chemical reaction where water, a compound is separated into the elements Hydrogen & Oxygen by electrical means.

Energy: Chemical & Electrical

Car 51 is a solar car that competed in the 1993 World Solar Challenge. The car is now being refitted by Year 12 students for their engineering studies.

Energy: Solar Electric

Gears have allowed us to increase or decrease the amount of work we do without additional energy from us. Here the gears of a bike are shown.

Energy: Kinetic when moving – Chemical from rider’s muscles

Formula SAE vehicles are down sized racing cars built and raced by tertiary students. Many of the cars have been adapted to run on bio fuels.

Energy: Motor - Chemical Motion - Kinetic

Solar Car Kelly runs entirely on electricity gained from its solar arrays over its top surface. Additional power is gained by regenerative braking.

Energy: Motor - Electrical Motion - Kinetic

The Nissan Leaf runs on electricity. Recharging is shown here using a special connection found in the car’s boot area.

Energy: Motor - Electrical Motion is Kinetic

Plants need moisture via their roots and carbon dioxide through their leaves in the presence of sunlight before photosynthesis can take place. Only then can a plant release oxygen.

Energy: Chemical

A fire needs 3 conditions to exist. Fuel, oxygen & ignition temperature. What follows is a chemical reaction where heat is produced.

Energy: Fire - Chemical Heat - Thermal

The Jatropha plant is poisonous to animals but the nuts produce oil that when refined becomes a bio-fuel.

Energy: Chemical

One of Sydney Harbour’s light houses. Once lit by fossil fuels, today most function using electricity from either the grid or adjacent solar arrays.

Energy: Light

Vehicle being refuelled with hydrogen

Energy: Motor - Chemical & Thermal during combustion. Motion of the vehicle

Motion - Kinetic + some Thermal (friction between road, tyres & moving parts)

Energy: Potential & Kinetic

Cranes lift objects. The higher the object the greater the potential energy. When lowering an object the potential becomes less and kinetic increases.

Energy: Potential & Kinetic

The rotation of a wind turbine enables two like magnetic poles to push themselves apart. The resultant rotation gives rise to an electrical charge.

Energy: Motion - Kinetic - Electrical

A small solar panel runs this toy car. Electricity from the panel goes directly to the motor to produce motion.

Energy: Motor - Electrical Motion is Kinetic

Tele communication can rely on radio waves to send messages across a nation. Here a repeater tower boosts the radio signal.

Energy: Sound

Plants gain energy from the act of photosynthesis. Animals benefit from this energy when they eat plants.

Energy: Chemical

Sailing relies on favourable winds. Winds push sails forward to create motion.

Energy: Kinetic

Paragliding is a sport that relies on the motion of a boat or vehicle and favourable winds. Staying aloft depends on manipulating cords.

Energy: Kinetic

Electrolysis is a chemical reaction where water, a compound is separated into the elements Hydrogen & Oxygen by electrical means.

Energy: Chemical & Electrical

Car 51 is a solar car that competed in the 1993 World Solar Challenge. The car is now being refitted by Year 12 students for their engineering studies.

Energy: Solar Electric

Gears have allowed us to increase or decrease the amount of work we do without additional energy from us. Here the gears of a bike are shown.

Energy: Kinetic when moving – Chemical from rider’s muscles

Formula SAE vehicles are down sized racing cars built and raced by tertiary students. Many of the cars have been adapted to run on bio fuels.

Energy: Motor - Chemical Motion - Kinetic

Solar Car Kelly runs entirely on electricity gained from its solar arrays over its top surface. Additional power is gained by regenerative braking.

Energy: Motor - Electrical Motion - Kinetic

The Nissan Leaf runs on electricity. Recharging is shown here using a special connection found in the car’s boot area.

Energy: Motor - Electrical Motion is Kinetic

Plants need moisture via their roots and carbon dioxide through their leaves in the presence of sunlight before photosynthesis can take place. Only then can a plant release oxygen.

Energy: Chemical

A fire needs 3 conditions to exist. Fuel, oxygen & ignition temperature. What follows is a chemical reaction where heat is produced.

Energy: Fire - Chemical Heat - Thermal

The Jatropha plant is poisonous to animals but the nuts produce oil that when refined becomes a bio-fuel.

Energy: Chemical

One of Sydney Harbour’s light houses. Once lit by fossil fuels, today most function using electricity from either the grid or adjacent solar arrays.

Energy: Light

Vehicle being refuelled with hydrogen

Energy: Motor - Chemical & Thermal during combustion. Motion of the vehicle

Motion - Kinetic + some Thermal (friction between road, tyres & moving parts)

Energy: Potential & Kinetic

Cranes lift objects. The higher the object the greater the potential energy. When lowering an object the potential becomes less and kinetic increases.

Energy: Potential & Kinetic

The rotation of a wind turbine enables two like magnetic poles to push themselves apart. The resultant rotation gives rise to an electrical charge.

Energy: Motion - Kinetic - Electrical

A small solar panel runs this toy car. Electricity from the panel goes directly to the motor to produce motion.

Energy: Motor - Electrical Motion is Kinetic

Tele communication can rely on radio waves to send messages across a nation. Here a repeater tower boosts the radio signal.

Energy: Sound

Plants gain energy from the act of photosynthesis. Animals benefit from this energy when they eat plants.

Energy: Chemical

Sailing relies on favourable winds. Winds push sails forward to create motion.

Energy: Kinetic

Paragliding is a sport that relies on the motion of a boat or vehicle and favourable winds. Staying aloft depends on manipulating cords.

Energy: Kinetic

Electrolysis is a chemical reaction where water, a compound is separated into the elements Hydrogen & Oxygen by electrical means.

Energy: Chemical & Electrical